

Station Road, Great Shelford

Flood Risk & Drainage Technical Note

Project No.	1281
Revision	В
Date	10 th November 2021
Client	Churchill Retirement Living
Prepared	L Blackmore
Checked	T Gilbert
Authorised	C Yalden
File Ref.	P:\1281 Station Road, Great Shelford\C Documents\1281 - Station Road, Great Shelford - Flood Risk & Drainage Technical Note

1 Introduction

Introduction & Background

- 1.1 Awcock Ward Partnership has been commissioned by Churchill Retirement Living to prepare a Flood Risk and Drainage Technical Note in support of a full planning application for the redevelopment of the former 'The Stables', 'The Maltings' and 'Granary House' commercial offices and associated car park at Station Road, Great Shelford, Cambridge, CB22 5LR.
- 1.2 The redevelopment is proposed to provide 39 retirement apartments and associated communal areas, parking and amenities.
- 1.3 The site fronts on to Station Road to the west and is bound to the north by residential properties. The site is bound to the east by the Cambridge to London railway line. The adjacent site to the south has received planning permission redevelopment into a care home (S/2809/19/FL, Sep 2020).
- 1.4 The site is located outside of the designated conservation area boundary.
- 1.5The location of the site in relation to its surroundings can be seen within
Figure 1.1. Shelford railway station is 100m due north of the site.

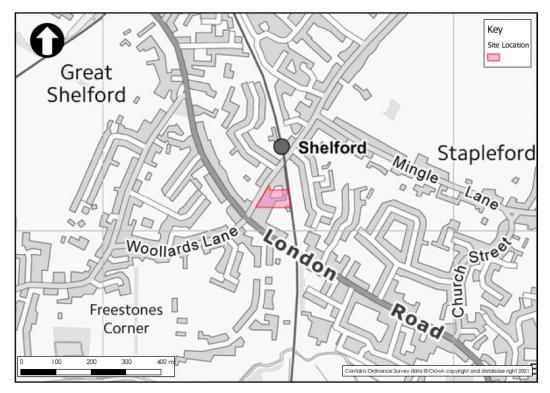


Figure 1.1 – Site Location on Station Road, Great Shelford

- 1.6 This Technical Note has been prepared in accordance with the National Planning Policy Framework (NPPF) and Cambridgeshire County Council's Flood and Water Supplementary Planning Document (July, 2016) and Surface Water Planning Guidance (June, 2021).
- 1.7 This document sets out the existing baseline conditions in Section 2, the development proposal in Section 3. The proposed surface water management plan and foul water strategy that will serve the development is discussed in Sections 4 and 5 respectively, with Section 6 providing the Ownership and Maintenance information before concluding in Section 7.

2 Existing Baseline Conditions

Existing Site

- 2.1 The existing brownfield site comprises existing commercial offices and car park with access from Station Road. The topographic survey confirms the site generally falls from north to south and west to east at a very shallow grade. An approximately average slope of 1 in 210 was calculated from the northern boundary to the southeast corner.
- 2.2 A copy of the topographic survey for the site can be seen as Appendix A.

Existing Flood Risk

2.3 An extract of the 'Flood Map for Planning' has been reproduced as Figure 2.1 and shows the site as being entirely within 'Flood Zone 1', as land assessed as having less than 1 in 1,000 annual probability of flooding from fluvial sources (<0.1%).

Figure 2.1 – EA Flood Map for Planning


Pluvial sources (surface water flooding)

- 2.4 An extract of the EA's 'Flooding from Surface Water' maps for low and medium risk from surface water flooding are shown in Figures 2.2 and 2.3 respectively. The mapping is based on LIDAR data and indicates the typical conveyance routes of surface water runoff.
- 2.5 Figure 2.2 shows that the site is not at risk of flooding in up to the 1% annual probability, this being the typical lifetime for a residential development.
- 2.6 Figure 2.3 indicates a localised area within the site which would be at risk of surface water flooding between the 1 in 100 and 1 in 1,000 year return period storms (annual probability 0.1-1%), however this mapping does not account for existing drainage infrastructure and in this case the existing site drainage would assist in mitigating any concentration of runoff within the property.

2.7 The site does not fall within a groundwater flood risk area or lie within the maximum extent of flooding from any reservoirs and there are no known on-site flood risks associated with infrastructure failure.

Ground Conditions

2.8 The Soilscape dataset (Figure 2.4) suggests that the site lies within an area typically underlain with freely draining soils, however it should be considered that the existing site is entirely brownfield and will therefore

comprise made ground which, subject to depths, may preclude use of infiltration.

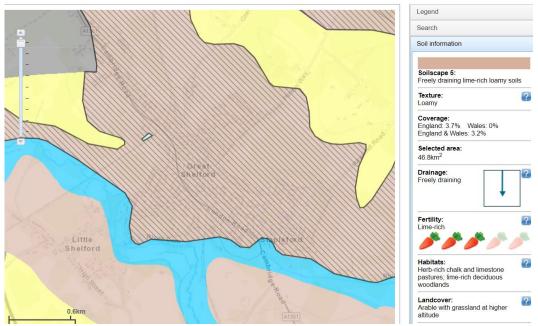


Figure 2.4 – Soilscape Dataset

Geotechnical information conducted on the adjacent site, available from planning application S/3809/19/FL document 'Fuel Depot, 2 Station Road, Great Shelford, Detailed Quantitative Risk Assessment' compiled by SLR (S_3809_19_FL-PHASE_2_CONTAMINATION_REPORT_ORIGINAL_SUBMISSION -5529367), advised that ground conditions consist of "Made Ground comprising sandy clay to gravely sand of brick and flint to 1.5m depth."

The sub-soils for the adjacent site were found to be West Melbury Marly Chalk Formation - recovered as light grey chalk bedrock to 9m depth, with groundwater levels within the underlying chalk bedrock at elevations of 14.5-16.0mOD, which would be as shallow as 2.0m below ground level (BGL).

- 2.9 Extracts from the SLR Report (2019) summarising conditions within the adjacent site can be found in Appendix B of this report.
- 2.10 It is considered likely that the application site will comprise similar baseline conditions and therefore the risk of elevated groundwaters may preclude the use of infiltration within this development.
- 2.11 It is recommended that a ground investigation is undertaken to verify the existing conditions and establish the feasibility of soakaway drainage as required by the approved drainage hierarchy.

Existing Site Drainage

- 2.12 The site is bordered by existing Anglian Water (AW) foul sewers to the west in Station Road. There are no nearby adopted surface water sewers.
- 2.13 An extract from Anglian Water's asset records can be seen as Figure 2.3.

- 2.14 Survey information confirms that the existing site comprises separate storm and foul drainage.
- 2.15 The storm system drains to the south-east corner of the site and continues southwards off-site via a single 225mm diameter pipe. No existing attenuation is identified on any drainage surveys however, the flow is likely limited by the 150mm diameter outflow pipe linking to the existing 225mm storm drain.
- 2.16 The existing foul system drains to the south-west corner of the site and discharges to the adopted foul network beneath Station Road via a single 150mm (6inch) diameter pipe.
- 2.17 The above arrangements are identified on the utility survey drawing preferred to support the adjacent site (S/3809/19/FL).
- 2.18 Copies of the Anglian Water records and the Drainage Plan for application S/3809/19/FL (showing the Utility Survey information) are included within Appendix C and D of this report respectively.

Existing surface water runoff

- 2.19 The existing site comprises hard paved parking areas and roof space, with no landscaped/planting areas (100% impermeable catchment). Runoff generated by the existing site would be limited by the existing 150mm diameter surface water sewer that discharges off-site via the existing stormwater network. Excess flows would overwhelm the system and pond within the site or sheet flow overland.
- 2.20 The existing brownfield rates have been estimated based on the Modified Rational Method (HR Wallingford, 1990) and are included in Table 2.1, with a copy of the calculation sheet included as Appendix E.

Table 2.1 – Estimated Brownfield Runoff Rates (0.302ha)

Return Period	Brownfield Rate (I/s)
2 year	43.0
30 years	123.3
100 years	172.2

- 2.21 Cambridgeshire County Council's (CCC) 'Sustainable Drainage Design & Evaluation Guide' (SuDS Guidance) states "On Brownfield sites (also known as Previously Developed Land), if infiltration of the 1 in 100 year rainfall event is not possible, the rate of discharge should be reduced to greenfield runoff rates."
- 2.22 The equivalent greenfield runoff rates for the site have been calculated using FEH, with the results summarised within Table 2.2 and the calculation sheet included within Appendix F of this report.

Table 2.2 – Equivalent Greenfield Runoff Rates (0.302ha)

Return Period	Greenfield Rate (l/s)
2 year	0.1
30 years	0.4
100 years	0.6

2.23 It is proposed that peak flows from the site are limited to greenfield rates as far as is practicable. In this instance limiting peak flows well below 1 I/s would require an impractically small control with increased risk of blockage, instead it is proposed to limit flows based on a minimum vortex flow control diameter with 100mm. This follows Sewer Sector Guidance where it recommends 100mm minimum control diameter where there is a risk of debris passing through the control.

3 Development Proposal

- 3.1 The development proposes to demolish the existing buildings and car parking area to enable the construction of a new apartment building which comprises 39 retirement apartments and associated facilities, parking and landscaping.
- 3.2 A copy of the proposed site layout has been included within Appendix G of this report.

4 Surface Water Management Plan

- 4.1 The site is less than 1ha (0.302ha) and is located within Flood Zone 1, therefore a Flood Risk Assessment is not required. This technical note has been prepared to assess any relevant flood risks and drainage constraints and to identify an appropriate drainage strategy for the proposed development.
- 4.2 To ensure the development is safe throughout its lifetime, the surface water strategy accounts for runoff in up to the 100 year return period.
- 4.3 The strategy also safeguards against the upper end allowances for climate change (40%) providing betterment over existing conditions, where the rate and volume of runoff would continue to increase due to climate change.
- 4.4 The existing site comprises made ground and is likely to be at risk of elevated groundwater which might preclude the use of infiltration drainage. For the purposes of this Surface Water Management Plan (SWMP) it is considered that surface water runoff will be attenuated on-site and discharged to the nearest and most appropriate receiving system.
- 4.5 At the discharge of conditions stage and to inform detailed design of the final drainage scheme, it is recommended that a ground investigation is completed and wherever practicable infiltration drainage is promoted.
- 4.6 There are no nearby watercourses or other surface water features therefore the proposed scheme looks to reuse the existing on-site storm network, which continues south off-site. It is noted that the adjacent development to the south has applied the same principles within their SWMP (ref. S/3809/19/FL).

- 4.7 Runoff generated by the proposed buildings, western access road and external hard paving will be collected and drained towards a new cellular attenuation tank beneath the amenity space to the south of the building.
- 4.8 All chambers immediately upstream of the tank will include silt traps, whilst the tank itself will include vented covers or a high-level vent pipe to mitigate air-locks.
- 4.9 Runoff from the central and eastern extents of access road will be directed towards areas of under-drained permeable paving. The use of permeable paving will be limited to the proposed parking bays within the eastern parking court. The permeable paving is included as a pollution control measure and forms part of the attenuation system.
- 4.10 Runoff from the tank and under-drained permeable paving will pass through a new flow control chamber prior to discharging to the existing network via the existing site connection. This will be subject to a CCTV condition survey to verify that the existing connection is suitable for reuse, or whether it requires any remedial works etc.
- 4.11 The peak rates of runoff will be limited as close to greenfield as practicable, based on a minimum 100mm diameter flow control, with a design flow peak rate of 5.91/s.
- 4.12 The MicroDrainage source control module has been used to determine the storage requirements for the development. The output of this exercise has been summarised within Table 4.1, with copies of the modelling outputs included within Appendix H.

Table 4.1 – Attenuation Storage Volumes Requirements

Attenuation Feature	Attenuation Volume
Cellular Tank	82m ³
Permeable paving	9m³
TOTAL	91m3

- 4.13 The proposed development achieves a substantial betterment compared to existing site conditions, as peak rates of discharge are limited to just 5.9 I/s peak in the 100 year return period storm with 40% climate change, compared to over 172 I/s from the existing brownfield site (97% betterment).
- 4.14 The proposed under-drained permeable paving and cellular attenuation will offer sufficient SuDS mitigation to offset the pollution indices for the site, in accordance with CIRIA C753.

Exceedance Measures

- 4.15 Beyond the 100-year critical storm, exceedance runoff will be directed towards the permeable paving in the car park and any residual areas of open space and/or the proposed car park, where any aboveground capacity can be utilised.
- 4.16 Beyond the limits of the site, exceedance flows would continue to the natural low point along the eastern boundary, as per existing conditions.
- 4.17 A copy of the preliminary drainage layout can be found on drawing 1281-01-PDL-1001 included within Appendix I.

Long-Term Storage

- 4.18 For previously developed sites, the 'Surface Water Planning Guidance' (June, 2021) recommend: "The runoff volume from the development site to any surface water body or sewer in the 1% AEP (1 in 100), 6 hour rainfall event must be constrained to a value as close to the greenfield runoff volume for the same event, but should never exceed the runoff volume from the existing site."
- 4.19 The proposed scheme identifies a significant amount more permeable green space than the existing site, reducing the drained catchment from 0.302ha (100% imp.) to 0.185ha (61% imp.). Therefore, the runoff volume for the new development is a betterment on the volume from the existing site.
- 4.20 Long term storage would be required for the additional volume of surface water, above the greenfield runoff volume. However, outflow at a discharge rate of 2 I/s/ha (thus 0.6 I/s) will require an inadequate flow control size (too small) and long term storage has therefore been disregarded.

5 Foul Water Strategy

- 5.1 Foul flows generated by the proposed development will drain through a new private gravity foul network and will utilise the sites existing foul connection to the Anglian Water (AW) adopted foul sewer network, located in Station Road. If the existing foul system receives live flow from the adjacent site, the private sewer would be diverted.
- 5.2 A foul capacity enquiry has been submitted to AW to confirm connection to their existing network beneath Station Road, and capacity has been confirmed.

5.3 The proposed foul drainage arrangements can be seen on the preliminary drainage layout drawing 1281-01-PDL-1001 within Appendix I.

6 Ownership & Maintenance

- 6.1 All on-site piped drainage will remain private and will be designed in accordance with Building Regulations Part H and will become the responsibility of the building operator.
- 6.2 The proposed attenuation will be retained under private ownership and will be operated and maintained by the operator in accordance with CIRIA C753 and any manufacturer specific guidance.
- 6.3 At the detailed design stage, a 'Drainage Maintenance Plan' will be prepared. The Plan will set out maintenance tasks, responsibilities and frequencies for the entire drainage network.

7 Conclusion


- 7.1 The proposed development has been assessed in line with the National Planning Policy Framework, to allow the planning application to be progressed and to show that the development can be undertaken in an acceptable manner from a flood risk perspective.
- 7.2 The proposed development is located within Flood Zone 1 and is not known to be susceptible to flooding from pluvial, groundwater, infrastructure or artificial sources.
- 7.3 To ensure the development is safe throughout its lifetime, the surface water strategy accounts for runoff in up to the 1 in 100 year return period.
- 7.4 The strategy also safeguards against climate change (40%), providing betterment over existing conditions, where the rate and volume of runoff would continue to increase due to climate change.
- 7.5 The existing site comprises made ground and is likely to be a risk of elevated groundwater which might preclude the use of infiltration drainage. For the purposes of this SWMP it is considered that surface water runoff will be attenuated on-site and discharged to the nearest and most appropriate receiving system.
- 7.6 At the discharge of conditions stage and to inform detailed design of the final drainage scheme, it is recommended that a ground investigation is completed and wherever practicable infiltration drainage is promoted.

- 7.7 The peak rates of runoff will be limited as close to greenfield as practicable, based on a minimum 100mm diameter flow control.
- 7.8 Runoff from the tank and under-drained permeable paving will pass through a new flow control chamber prior to discharging to the existing network via the existing site connection. This will be subject to a CCTV condition survey.
- 7.9 The proposed development achieves a substantial betterment compared to existing site conditions, as peak rates of discharge are limited to just 5.9 I/s peak in the 100 year return period storm with 40% climate change, compared to over 172 I/s from the existing brownfield site (97% betterment).
- 7.10 The proposed under-drained permeable paving and cellular attenuation will offer sufficient SuDS mitigation to offset the pollution indices for the site, in accordance with CIRIA C753.
- 7.11 The impermeable drained catchment will reduce through the development, also reducing the volume of runoff from the site.
- 7.12 Beyond the 100-year critical storm, exceedance runoff will be directed towards any residual areas of open space and/or car parking, where any aboveground storage can be utilised.
- 7.13 Foul flows generated by the proposed development will be served by a new private gravity network, tying into an existing connection to the Anglian Sewer foul sewer network.
- 7.14 All on-site proposed drainage will remain private and will be designed in accordance with Building Regulations Part H and CIRIA C753 and will become the responsibility of the building operator.
- 7.15 As the development will be safe from flooding throughout its lifetime and will actively reduce the flood risk to properties within the downstream catchment, it is recommended that the Local Planning Authority confirm they have no objections to the proposed development.

Appendix A Topographic Survey

Appendix B Ground Investigation (Extracts)

3.0 Previous Assessment Work

3.1 Previous Assessments

The Site has been subject to several phases of previous assessment work, which are listed in Table 3-1 and summarised below.

Date	Document Title and Author
August 2008	Environmental Site Investigation Report, Shelford Energy Ltd, 2 Station Road, Great Shelford, Cambridge, CM3 5LT. REC Report 50740/report 1.1.
November 2008	Site Specific Controlled Waters Risk Assessment, Shelford Energy Ltd, 2 Station Road, Shelford, Cambridge, CM3 5LT. REC Report 50740/report 3.1.
September 2014	Groundwater Remediation Verification Report, Shelford Energy, for Mr Paul Davies. OHES Report Ref: R001MT – 14.7441.
February 2015	Environmental Site Assessment and DQRA, Station Road Great Shelford, for Mr Paul Davies. OHES Report Ref: R001MT – 15.8182.
February 2016	Watson Oil Depot, Great Shelford, Environmental Site Assessment Report for FH Great Shelford Limited. SLR Consulting Report Reference 404.05952.00001.
June 2016	Groundwater Monitoring Results (SLR Consulting email)
January 2018	2 Station Road, Great Shelford, Land Quality Assessment Report for FH Great Shelford Limited. SLR Consulting Report Reference 404.05952.00001.
October 2018	2 Station Road, Great Shelford, Phase 1 Data Review and Preliminary Land Quality Assessment Report for FH Great Shelford Limited. SLR Consulting Report Reference 416-05952-00003- PLQRA
October 2018	2 Station Road, Great Shelford, Groundwater Monitoring Report for FH Great Shelford Limited. SLR Consulting Report Reference 416-05952-00003-GWMON

Table 3-1: Previous Assessment Reports

3.2 Summary of Previous Environmental Assessments

The details from the various phases of investigation are provided below; for further detail, the reports listed in Table 3-1 should be read in full.

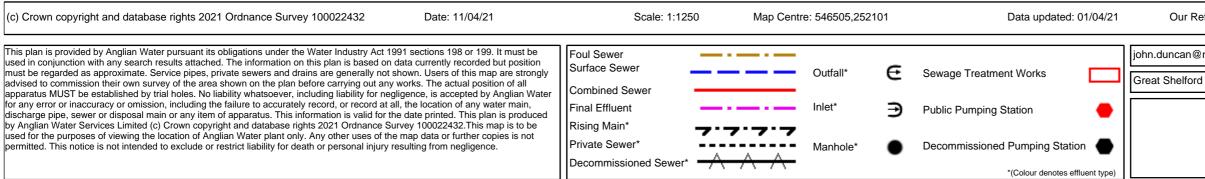
• A total of 58 boreholes have been drilled across the site between July 2008 and December 2015 during the various phases of investigation that have been completed at the Site. A schedule of the boreholes advanced across the Site and adjacent land are summarised in Table 3-2 below and shown on Drawing 02.

Date Drilled	Consultant	No. of BH Drilled	BH Ref.	No. of Monitoring Wells Installed	Max. Drilled Depth (mbgl)
July 2008	REC	10	CP1 to CP5, 10 HA01 & WS1 to WS4		8
Sept 2008	REC	9	WS21 to WS27 (located in car park of offices to north) WS28 & WS29 (fuel depot)	9	5
July 2009	OHES	2	WS32 & WS33	2	5
Nov 2009	OHES	14	AW01 to AW14	14	9
Jan 2015	OHES	15	WS401 to WS412, & HA401 to HA403	0	5
Dec 2015	SLR	11	BH101 to BH111	11	7.3

Table 3-2: Schedule of Existing Boreholes

- All boreholes were drilled using either windowless sampling, percussive or rotary coring techniques, with borehole geology descriptions based on logged drilling arisings. Compiled borehole logs are included within SLRs 2018 PLQRA report. Ground conditions were recorded to comprise the following sequence:
 - <u>Made Ground</u> comprising sandy clay to gravely sand of brick and flint to 1.5m depth;
 - <u>Superficial Deposits (River Terrace Deposits)</u> comprising brown gravelly Sand, with gravel of flint and chalk, typically <2m, but locally up to 3.2m in the northeast corner;
 - <u>West Melbury Marly (WMM) Chalk Formation</u> recovered as light grey chalk bedrock to 9m depth. Chalk recovered in disturbed condition. Interpreted as West Melbury Marly Chalk Formation.
- Significant and widespread soil hydrocarbon impact was recorded within the boreholes drilled across the Site, typically at depths of between 2m and 5m, associated with, and below, the "smear zone" of water table fluctuation. Strong hydrocarbon odours, grey staining and elevated field headspace readings were recorded in the boreholes across the vertical profile with the highest impact typically found in the chalk bedrock between 3m and 5m depth (13m and 15mAOD).
- Numerous groundwater monitoring events have been completed at the Site associated with the following key periods of work:
 - 2009 to 2014: completed before and during groundwater remediation works;
 - 2015 to 2017: undertaken after groundwater remediation works were completed in 2014.
- Groundwater is present within the underlying chalk bedrock and has historically been recorded at depths
 of between 2.3m and 5m, corresponding to elevations of between 14.5m and 16mAOD with a relatively
 consistent seasonal fluctuation in the groundwater table of around 1 metre. The overlying Superficial
 Deposits are unsaturated. Groundwater depths were generally deeper in the higher elevation central parts
 of the Site at around 4.5m to 5.0m and shallower in the lower elevation parts of the site along the eastern
 and western boundaries (typically at around 3m depth).
- The 2018 groundwater monitoring data indicates an overall hydraulic gradient of 0.0024 towards the west southwest to southwest.

- Extensive and widespread hydrocarbon impact to groundwater has been recorded across the central area of the Site, including "floating oil" (LNAPL¹), close to fuel storage and dispensing areas, historically at measured thicknesses of >350mm.
- Groundwater remediation was undertaken by OHES between 2009 and 2014, although with no regulatory involvement. This comprised a combination of oil skimming and total fluids "pump and treat" from the "AW" series of abstraction wells located in the centre of the with the objective of reducing the thickness of LNAPL floating on groundwater. OHES reported over 8 million litres (8,000 cubic metres) of groundwater was treated and 1,080 litres of oil was removed, with a corresponding reduction in LNAPL thicknesses to a few millimetres by system closure in 2014.
- Boreholes advanced by OHES and SLR in 2015 following completion of the remediation works recorded the continued presence of widespread hydrocarbon impact to soil and groundwater, generally at depths of 3m to 5m below the site.
- Numerous groundwater monitoring visits completed by SLR between 2015 and 2018 recorded low, and stable or declining, dissolved phase concentrations and continued measurable accumulations of LNAPL in only a few isolated monitoring well locations. These LNAPL accumulations corresponded to seasonal water table fluctuations with greatest LNAPL thicknesses recorded when groundwater was at its lowest level. This is likely to be attributable to gravity drainage from residual historical LNAPL previously trapped in fractures below the seasonal water table. Compiled LNAPL thickness data and plots are included as Appendix 09.
- Field permeability testing indicates the chalk to have hydraulic conductivity values of between 0.14m/d and 1.29m/d with an average value of 0.5m/d (5.77x10⁻⁶ m/s).
- Groundwater samples collected in 2018 recorded concentrations of petroleum hydrocarbons above water quality standards (WQS) or laboratory detection limits, with the majority of exceedances recorded in the centre of the Site within the C10 to C21 aromatic hydrocarbon bands, consistent with a weathered diesel and kerosene fuel source.
- The previous investigations identified the following historical contaminant sources as illustrated on Drawing 03:
 - Area A: The eastern area of the fuel depot yard, centred on the existing main AST farm and current fuel loading areas;
 - Area B: The area beneath the former overhead refuelling gantry and historical AST bunds.



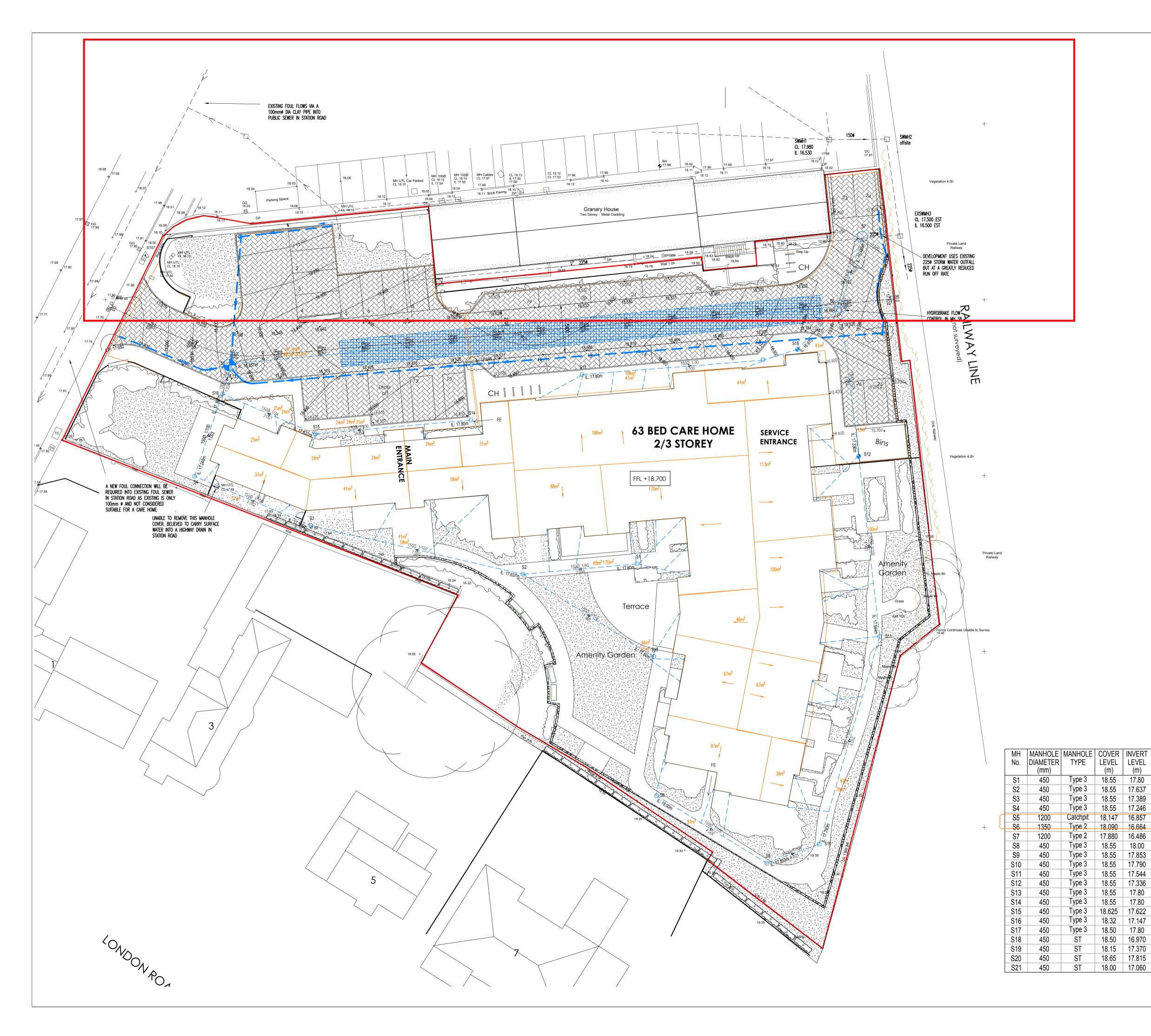
¹ light non-aqueous phase liquid also known as separate or free phase fuel

Appendix C Severn Trent Water Records

Our Ref: 537194 - 1

john.duncan@nrswa.net

Wastewater Plan A3


Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert	Manhole
3001	F	15.996	14.386	1.61	
3101	F	15.496	13.886	1.61	
3207	F	-	-	-	
3901	F	16.493	14.344	2.149	
3902	F	16.526	14.633	1.893	
1001	F	16.776	14.776	2	
101	F	18.547	16.917	1.63	
102	F	17.316	15.536	1.78	
103	F	17.358	16.208	1.15	
104	F	18.36	15.784	2.576	
1105	F	-	-	-	
106	F	-	-	-	
1201	F	16.036	14.546	1.49	
1901	F	18.001	16.151	1.85	
5001	F	-	-	-	
5101	F	-	-	-	
5102	F	-	-	-	
5203	F	-	-	-	
6001	F	-	-	-	
6002	F	-	-	-	
6003	F	-	-	-	
6004	F	-	-	-	
6005	F	-	-	-	
6101	F	-	-	-	
7902	F	-	-	-	
			1		

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert
	1			

Liquid Type	Cover Level	Invert Level	Depth to Invert
	-		

Appendix D Utility Survey

NOTES

- 1. DO NOT SCALE FROM THIS DRAWING. USE FIGURED DIMENSIONS - ONLY, IF IN DOUBT ASK.----

- 2. ALL DIMENSIONS IN MILLIMETRES UNLESS NOTED OTHERWISE. 3. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ENGINEERS AND ARCHITECTS DRAWINGS AND
- SPECIFICATIONS.

+	252100.00mN	
	LEGEND	
	·_·	FOUL DRAIN PRIVATE
		FOUL TYPE 3 INSPECTION CHAMBER PRIVATE
		WAVIN RANGE 450 MAX DEPTH 2.0m FOUL TYPE 4 INSPECTION CHAMBER PRIVATE
		WAVIN RANGE 225 MAX DEPTH 0.6m
		SURFACE WATER TYPE 3 INSPECTION CHAMBER
		PRIVATE WAVIN RANGE 450 MAX DEPTH 2.0m
		(- H) HYDROBRAKE CHAMBER
		- — — SURFACE WATER DRAIN PRIVATE
	•	SURFACE WATER SILT TRAP
		AQUACELL CORE OR SIMILAR ATTENUATION CRATES. LAID
	252080.0 0 mN	ON 100mm BED OF COARSE SAND. 100mm COARSE SAND TO SIDES OF EXCAVATION AND LAID DIRECTLY ON TOP OF MEMBRANE. IMPERMEABLE 2000g MEMBRANE.
+		SYSTEM TO BE VENTED WITH 110mm PIPE USING SIDE CONNECTION TO BESPOKE VENTILATION BOX WITH
		BALLOON GRATING FLANGE ADAPTORS
		PERMEABLE PAVING TO CAR PARK COLOUR TO
	150ø PERFORAT	ARCHITECT/CLIENT REQUIREMENTS. SEMI PERFORATED PIPE TO CARRY FLOW FROM DRAINAGE BLANKET SUMP INTO SILT TRAPS
	18.00	0 + PROPOSED CAR PARK LEVEL +
		IS ACCREDITED TO THE BRITISH PLASTICS FEDERATION PLASTIC PIPES GROUP TE INSTALLATION OF STRUCTURAL WALL PLASTIC PIPES THAT ARE OFFERED FOR
	PIPE MATERIALS	₽E 100mm ø UNLESS NOTED OTHER₩ISE
	100mmø MUST HAV	/E CLASS SN8 LOADING ISMA ULTRARIB SYSTEM
+	252060.00mN 225mmø – 300mm	Ø MARLEY QUANTUM SEWER Ø POLYPIPE/ RIDGISEWER TWINWALL SYSTEM
·	601mmø – CONCRE	TE OR WEHOLITE SUBJECT TO DESIGN
	DEVELOPER SHALL G	PLICATION TO CONNECT MUST BE MADE TO THE WATER AUTHORITY. THE SWE 21 DAYS NOTICE PRIOR TO CONNECTION. THE WORKS MAY ONLY BE
	UNDERTAKEN BY AN	SSIP HEALTH AND SAFETY APPROVED CONTRACTOR
+	252040.00mN	
	-	B MINOR ADJUSTMENTS FOLLOWING sSOUTH CAMBRIDGESHIRE CC -
	11	2.06.20 COMMENTS -
	11	A PLAN UPDATED WITH REVISED ARCHITECT LAYOUT 110-E
		REVISION
	ſ	DATE CHE
		PORTHAVEN
DEPTH TO		
SOFFIT (m)		
0.60	ſ	Project Title:
0.763		2 STATION ROAD
1.011		GREAT SHELFORD
1.154		CAMBRIDGESHIRE
<u>+1.201</u>	252020.00mN	Drawing Title:
1.246		PROPOSED DRAINAGE STRATEGY
0.40		
0.610		
0.856		Drawn By: RN Scales: 1:200@A1 Date: AUG 2019 Drawing Number: Rev:
0.60		Date: AUG 2019 Drawing Number: Rev: Checked By: 10540-500 B
0.60	II (
0.0=0		Date:
0.853		Date:
0.853 1.023 0.55		Date:
1.023 0.55 1.380		Date: Date: Drawing Status: PLANNING
1.023 0.55		Date: Drawing Status: PLANNING NJP Consulting Engineers Limited 20 St Andrews Crescent
1.023 0.55 1.380 0.630		Date: Drawing Status: PLANNING NJP Consulting Engineers Limited
1.023 0.55 1.380 0.630 0.685		Date: Drawing Status: PLANNING NJP Consulting Engineers Limited 20 St Andrews Crescent

Tel: 029 2072 9500 Email: info@njpuk.com Web: www.njpuk.com

 \bigvee

Appendix E Brownfield Runoff Calculations

Project No.	1281	
Project Title	Station Road, Great Shelford	
Client	CRL	awcockward
Sheet Ref	P:\1281 Station Road, Great Shelford\D Design and Analysis\SPREADSHEETS\01 Drainage\03 Sewer Design\[1281 Colebrook White Equation (pipe velocity & capacity).xlsx]Colebrook-White	

Calcs by	L Blackmore
Checked by	TG
Approved by	СРУ
Date	02.11.2021
Revision	Α

Catchment area analysis based on Modified Rational Method equation (HR Wallingford, 1990);

$Q_{BAR} =$	= 2.78 -	$i \cdot A$	I	Hydrological	Region:	5 *see map
Where:	QBARAverage discharge (l/s)iRainfall intensity (mm/hr)ACatchment area (m²)		m/hr)		i	57.6 mm/hr *see map
	Retur	n Period	2yr	30yr	100yr	
	Growth Factor (Q/QBAR)		0.89	2.55	3.56	
	Critic	al Area (ha)	0.2805	0.0979	0.0701	area that can freely drain)
Brownfie	d flow	rate analysis based	on Modifi	ed Rational	Method (H	IR Wallingford, 1990);

		analysis based	on moune a	Kanonan			
			2yr	30yr	100yr	QBAR	
Area (ha):	0.302	BF flow (I/s):	43.04	123.31	172.16	48.36	

Appendix F Greenfield Runoff Rates

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

						1		
alculated by:	Letisha	Blackr	nore		Site Details			
te name:	1281 Gi	reat Sh	nelford		Latitude:	52.14784° N		
te location:			ambridgeshire		Longitude:	0.13956° E		
				used to meet norm	al best practice criteria			
line with Environmen	nt Agency g	guidance	e "Rainfall runoff m	anagement for de	evelopments", Reference:	1521797951		
, ,	rmation on	n greenfi	eld runoff rates ma		ry standards for SuDS setting consents for Date:	Oct 20 2021 16:45		
unoff estimatio	on appro	bach	FEH Statistica	I				
te characterist	tics				Notes			
otal site area (ha):	0.302				(1) Is Q _{BAR} < 2.0 l/s/ha?			
ethodology	Γ							
MED estimation m	ethod:	Calculate from BFI and SAAR		IND SAAR	When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set			
il and SPR method: Spec		Specify BFI manually		/	at 2.0 l/s/ha.			
OST class:		N/A						
FI / BFIHOST:		0.77	1		(2) Are flow rates < 5.0 l/s?			
_{MED} (I/s):					Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other			
_{BAR} / Q _{MED} factor	r:	1.12						
ydrological cha	aracteris	stics	Default	Edited	materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate			
AAR (mm):		[540	540	drainage elements.	ssed by using appropriate		
/drological region	ו:		5	5	(3) Is SPR/SPRHOST ≤ 0.3?			
owth curve facto	or 1 year:		0.87	0.87				
rowth curve facto	or 30 yea	rs:	2.45	2.45	Where groundwater levels are low enough the use of			
		3.56	soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.					
		4.21						

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):		0.16
1 in 1 year (l/s):		0.14
1 in 30 years (l/s):		0.38
1 in 100 year (l/s):		0.56
1 in 200 years (l/s):		0.66

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/termsand-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Appendix G Proposed Site Plan

	Rev.
	NOTE Allowing for v footpath to 2. frontage.
Pollway Line	BOUNDA A-B-C 1.1m enha (adja C-D 1.1m low I D-E Exist and requ
	E-A 1.8M land FLAT MIX 1 BED AP 2 BED AP TOTAL
	Client Client Retiren
	Project Title PROPOSED RETIR Station Road, Great Shelford, Cambridge, CB2 Drawing Title SITE PLAN <u>Scale 1:200 @ A</u> Drawn MJS/EKS
	Drawing No. 40040G

Date By NORTH

widening of existing 2.00m to Station Road

ARY TREATMENT

- m metal railings with nanced landscaping jacent to public footpath) m railing around existing
- level brick wall
- sting brick wall retained d made good where uired
- M Timber Fencing with ndscaping

PARTMENTS = 24PARTMENTS = 15= 39

> BED APARTMENTS BED APARTMENTS COMMUNAL AREAS

B22 5LR

Date 01.11.21 Checked GSL

Rev.

GS/PA01

Appendix H MicroDrainage Calculations

AWP		Page 1
Kensington Court	1281-StationRD Great Shelford	
Pynes Hill	Complex Attenuation Storage	<u> </u>
EX2 5TY	100yr+40%CC	Micro
Date 01/11/2021 14:18	Designed by tom.richards	
File 1281-SW-101-C - COMPLEX STORA	Checked by	Drainage
XP Solutions	Source Control 2017.1	

Summary of Results for 100 year Return Period (+40%)

Half Drain Time : 157 minutes.

Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (l/s)	Max Volume (m³)	Status	
15	min	Summer	98.636	0.636	0.0	4.5	4.5	49.6	ΟK
30	min	Summer	98.797	0.797	0.0	4.5	4.5	62.1	ΟK
60	min	Summer	98.915	0.915	0.0	4.5	4.5	71.2	ΟK
120	min	Summer	99.518	1.518	0.0	5.5	5.5	78.7	ΟK
180	min	Summer	99.542	1.542	0.0	5.5	5.5	79.8	ΟK
240	min	Summer	99.528	1.528	0.0	5.5	5.5	79.2	ΟK
360	min	Summer	98.977	0.977	0.0	4.5	4.5	76.1	ΟK
480	min	Summer	98.907	0.907	0.0	4.5	4.5	70.6	ΟK
600	min	Summer	98.836	0.836	0.0	4.5	4.5	65.1	ΟK
720	min	Summer	98.765	0.765	0.0	4.5	4.5	59.6	ΟK
960	min	Summer	98.615	0.615	0.0	4.5	4.5	47.9	ΟK
1440	min	Summer	98.363	0.363	0.0	4.5	4.5	28.3	ΟK
2160	min	Summer	98.184	0.184	0.0	4.3	4.3	14.4	ΟK
2880	min	Summer	98.121	0.121	0.0	4.0	4.0	9.4	ΟK
4320	min	Summer	98.088	0.088	0.0	2.9	2.9	6.9	ΟK
5760	min	Summer	98.075	0.075	0.0	2.3	2.3	5.8	ΟK
7200	min	Summer	98.067	0.067	0.0	2.0	2.0	5.2	ΟK
8640	min	Summer	98.062	0.062	0.0	1.7	1.7	4.8	ΟK
10080	min	Summer	98.059	0.059	0.0	1.6	1.6	4.6	ΟK
15	min 1	Winter	98.718	0.718	0.0	4.5	4.5	55.9	ΟK
30	min 1	Winter	98.900	0.900	0.0	4.5	4.5	70.1	ΟK
60	min 1	Winter	99.556	1.556	0.0	5.5	5.5	80.4	ΟK
120	min 1	Winter	99.766	1.766	0.0	5.9	5.9	89.9	ΟK
180	min 1	Winter	99.790	1.790	0.0	5.9	5.9	91.0	ΟK

Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m ³)	Time-Peak (mins)	
15	min	Summer	154.100	0.0	52.6	18
		Summer	99.217	0.0	67.9	33
			60.715	0.0	83.4	62
			38.326	0.0	105.5	110
180	min	Summer	28.794	0.0	119.0	142
240	min	Summer	23.270	0.0	128.3	174
360	min	Summer	16.940	0.0	140.1	252
480	min	Summer	13.365	0.0	147.4	322
600	min	Summer	11.059	0.0	152.4	390
720	min	Summer	9.444	0.0	156.2	460
960	min	Summer	7.324	0.0	161.5	596
1440	min	Summer	5.085	0.0	168.0	820
2160	min	Summer	3.529	0.0	174.8	1144
2880	min	Summer	2.736	0.0	180.5	1472
4320	min	Summer	1.941	0.0	191.7	2204
5760	min	Summer	1.543	0.0	202.9	2936
7200	min	Summer	1.309	0.0	215.0	3672
8640	min	Summer	1.157	0.0	227.6	4336
10080	min	Summer	1.050	0.0	240.8	5128
15	min	Winter	154.100	0.0	59.0	18
30	min	Winter	99.217	0.0	76.2	32
60	min	Winter	60.715	0.0	93.5	60
120	min	Winter	38.326	0.0	118.3	116
180	min	Winter	28.794	0.0	133.4	146

AWP		Page 2
Kensington Court	1281-StationRD Great Shelford	
Pynes Hill	Complex Attenuation Storage	<u> </u>
EX2 5TY	100yr+40%CC	Micco
Date 01/11/2021 14:18	Designed by tom.richards	
File 1281-SW-101-C - COMPLEX STORA	Checked by	Drainage
XP Solutions	Source Control 2017.1	

St	orm	Max	Max	Max	Max	Max	Max	Status
Ev	ent	Level	Depth	Infiltration				
		(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
240 m	in Winter	99.771	1.771	0.0	5.9	5.9	90.1	OF
360 m	in Winter	99.649	1.649	0.0	5.7	5.7	84.6	Οŀ
480 m	in Winter	99.510	1.510	0.0	5.4	5.4	78.4	O F
600 m	in Winter	98.918	0.918	0.0	4.5	4.5	71.5	O F
720 m	in Winter	98.817	0.817	0.0	4.5	4.5	63.7	O F
960 m	in Winter	98.592	0.592	0.0	4.5	4.5	46.1	O F
1440 m	in Winter	98.260	0.260	0.0	4.5	4.5	20.2	OH
2160 m	in Winter	98.115	0.115	0.0	3.8	3.8	9.0	OH
2880 m	in Winter	98.090	0.090	0.0	3.0	3.0	7.0	O F
4320 m	in Winter	98.070	0.070	0.0	2.1	2.1	5.5	OH
5760 m	in Winter	98.061	0.061	0.0	1.7	1.7	4.7	OH
7200 m	in Winter	98.055	0.055	0.0	1.4	1.4	4.3	O H
8640 m	in Winter	98.051	0.051	0.0	1.3	1.3	4.0	O F
10080 m	in Winter	98.049	0.049	0.0	1.2	1.2	3.8	OF

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
240	min	Winter	23.270	0.0	143.7	184
360	min	Winter	16.940	0.0	157.0	262
480	min	Winter	13.365	0.0	165.2	336
600	min	Winter	11.059	0.0	170.8	422
720	min	Winter	9.444	0.0	175.1	498
960	min	Winter	7.324	0.0	181.0	636
1440	min	Winter	5.085	0.0	188.3	836
2160	min	Winter	3.529	0.0	196.0	1124
2880	min	Winter	2.736	0.0	202.4	1468
4320	min	Winter	1.941	0.0	215.0	2184
5760	min	Winter	1.543	0.0	227.6	2864
7200	min	Winter	1.309	0.0	241.1	3656
8640	min	Winter	1.157	0.0	255.3	4320
10080	min	Winter	1.050	0.0	270.2	5120

AWP		Page 3
Kensington Court	1281-StationRD Great Shelford	
Pynes Hill	Complex Attenuation Storage	<u> </u>
EX2 5TY	100yr+40%CC	Micco
Date 01/11/2021 14:18	Designed by tom.richards	
File 1281-SW-101-C - COMPLEX STORA	Checked by	Drainage
XP Solutions	Source Control 2017.1	1
R	ainfall Details	
Rainfall Model	FEH Winter Storms Ye	es
Return Period (years)	100 Cv (Summer) 0.75	
FEH Rainfall Version	2013 Cv (Winter) 0.84	
Data Type	252112 TL 46487 52112 Shortest Storm (mins) 1 Point Longest Storm (mins) 1008	-5
Summer Storms	Yes Climate Change % +4	
	ime Area Diagram Dtal Area (ha) 0.185	
	Time (mins) Area	
1	From: To: (ha)	
	0 4 0.185	

AWP													Page 4	1
Kensingtor	1 Cou	rt				1281-9	StationR) Gre	eat Sh	elford	ł			
Pynes Hill						Complex Attenuation Storage							4	
EX2 5TY									7 ~~					
	100yr+40%CC							– Mic	$\tilde{0}$					
Date 01/11						Designed by tom.richards							Drai	inage
File 1281-	-								nage					
XP Solutio)ns					Source	e Control	L 201	17.1					
						Model	<u>Details</u>							
				Sto	orage is	Online Co	over Level	(m)	100.000)				
					<u>C</u>	Complex	Structur	<u>e</u>						
						Cellula	r Storaq	0						
					<u>-</u>	CEIIUIA	I Storay							
					Coefficie	nt Base (1 (m) 98 m/hr) 0.00 m/hr) 0.00	000	-	Factor				
Depth (m)	Area	(m²)	Inf. Are	ea (m²)	Depth (n	n) Area (m²) Inf. A	rea ((m²) De	pth (m)	Area	(m²)	Inf. Are	a (m²)
0.000	J	82.0		50.0	1.00	00 8	2.0	8	30.0	1.001		0.0		80.0
						Porous	Car Parl	<u> </u>						
		Infil				se (m/hr) n (mm/hr)				Width Length		5.0		
			Menior			$\frac{1}{100} (\frac{1}{100})$				Slope (1		0.0		
				Max			2.0 I	enres		-		5		
					Jaret		0.30			on (mm/c		3		
					Invert I	-	99.500		-	e Depth	-			
				<u>Hyd</u> :	ro-Brak	e® Opti	mum Outf	low	Contro	<u>51</u>				
					II	oit Dofor	ence MD-SH	E 010	0 4500	1000 45	500			
							(m)			1.000-43 1.0				
						gn Flow (1.5			
						Flush-			(Calculat				
						Objec	tive Mini	mise	upstrea	am stora	age			
						Applica				Surfa	ace			
						ump Avail					les			
						Diameter					L00			
			Minim	····· 0··+ 1		ert Level				98.0				
					-	Diameter Diameter					150 200			
	Co	ntrol	Points			'low (l/s)		trol	Points			m) Flo	w (l/s)	
De	o i ouo T	Deint	(Colev10)	h a al)	1 000	4 6			Z de la					
De	sign F	201NT	(Calculat Flush-1		1.000 0.292	4.5	Mean Flo	w ove:		-Flo® Range	0.6	-	3.6 3.9	
The hydrol as specifi storage ro	Led. S	Should	another	type o	of contro	l device		-		-		-		-
Depth (m)	Flow	(1/s)	Depth (m) Flo	w (l/s) I	Depth (m)	Flow (1/s) Der	oth (m)	Flow (1/s)	Depth	(m) Flow	(l/s)
0.100		3.3	0.8	00	4.1	2.000	6.	2	4.000		8.6	7.	000	11.2
0.200	1	4.4			4.5	2.200			4.500		9.1	7.	500	11.6
0.300		4.5			4.9	2.400			5.000		9.6		000	12.0
0.400		4.4			5.3	2.600			5.500		10.0		500	12.3
0.500		4.2			5.6	3.000	7. 8.		6.000		10.4		000	12.7 13.0
0.600		3.8	1.8	00	5.9	3.500	×	1.1	6.500		10.8	У.	500	$I \prec ()$

3.500

8.1 6.500

10.8

9.500

1.800

3.8

0.600

5.9

13.0

Appendix I Preliminary Drainage Layout

acceptable manner from a flood risk perspective. . The proposed development is located within Flood Zone 1 and is not

The proposed development has been assessed in line with the National Planning Policy Framework, to allow the planning application to be progressed and to show that the development can be undertaken in an

- known to be susceptible to flooding from pluvial, groundwater, infrastructure or artificial sources.
- water strategy accounts for runoff in up to the 1 in 100 year return period. . The strategy also safeguards against climate change (40%), providing betterment over existing conditions, where the rate and volume of runoff

3. To ensure the development is safe throughout its lifetime, the surface

- would continue to increase due to climate change. The existing site comprises made ground and is likely to be a risk of elevated groundwater which might preclude the use of infiltration drainage. For the purposes of this SWMP it is considered that surface water runoff will be attenuated on-site and discharged to the nearest and most
- At the discharge of conditions stage and to inform detailed design of the final drainage scheme, it is recommended that a ground investigation is completed and wherever practicable infiltration drainage is promoted.
- . The peak rates of runoff will be limited as close to greenfield as practicable, based on a minimum 100mm diameter flow control.

appropriate receiving system.

- 3. Runoff from the tank and under-drained permeable paving will pass through a new flow control chamber prior to discharging to the existing network via the existing site connection. This will be subject to a CCTV condition survey.
- . The proposed development achieves a substantial betterment compared to existing site conditions, as peak rates of discharge are limited to just 5.9 I/s peak in the 100 year return period storm with 40% climate change, compared to over 172 I/s from the existing brownfield site (97% betterment).
- The proposed under-drained permeable paving and cellular attenuation will offer sufficient SuDS mitigation to offset the pollution indices for the site, in accordance with CIRIA C753.
- 11. The impermeable drained catchment will reduce through the development, also reducing the volume of runoff from the site.
- 2. Beyond the 100-year critical storm, exceedance runoff will be directed towards any residual areas of open space and/or car parking, where any aboveground storage can be utilised.
- 13. Foul flows generated by the proposed development will be served by the a new private gravity network, tying into an existing connection to the Anglian Sewer foul sewer network.
- 14. All on-site proposed drainage will remain private and will be designed in accordance with Building Regulations Part H and CIRIA C753 and will become the responsibility of the building operator.
- 15. As the development will be safe from flooding throughout its lifetime and will actively reduce the flood risk to properties within the downstream catchment, it is recommended that the Local Planning Authority confirm they have no objections to the proposed development

0.302 ha

Area Summary Schedule

Exist. Impermeable Catchment 0.302 ha Net Developable Area

Prop. Impermeable Catchment 0.185 ha Prop. Percentage Impermeable 61%

Equivalent Greenfield Runoff Rates The greenfield runoff rates have been assessed for the net developable area using the FEH Method. The calculation excludes

large areas of open space which will remain undeveloped. Greenfield Rate (I/s) 0.14 Return Period

0.38

0.56

0.185 ha

95%

30%

91.0 m³

5.9 l/s

Site Boundary

Hydrobrake @IL+0.000

Cellular Storage with

Under-drained Porous

4.0 m x 20.5 m x 1.0 m deep

5.0 m x 30.0 m x 0.5 m deep

Ref: MD-SHE-100-4500-1000-4500

30yr 100yr Attenuation Summary

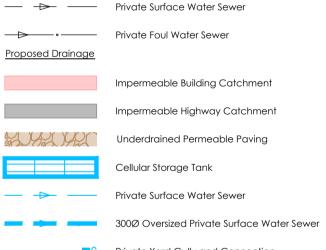
Complex Attenuation Feature

Catchment Hydraulic Control Type Cellular Storage Porosity

Cellular Storage Dimensions Porous Parking Porosity Porous Parking Dimensions 100yr+40% Volume Required:

100yr+40% Discharge Rate:

Key


Existing Utilities

Adopted Foul Water Sewer

Proposed Drainage

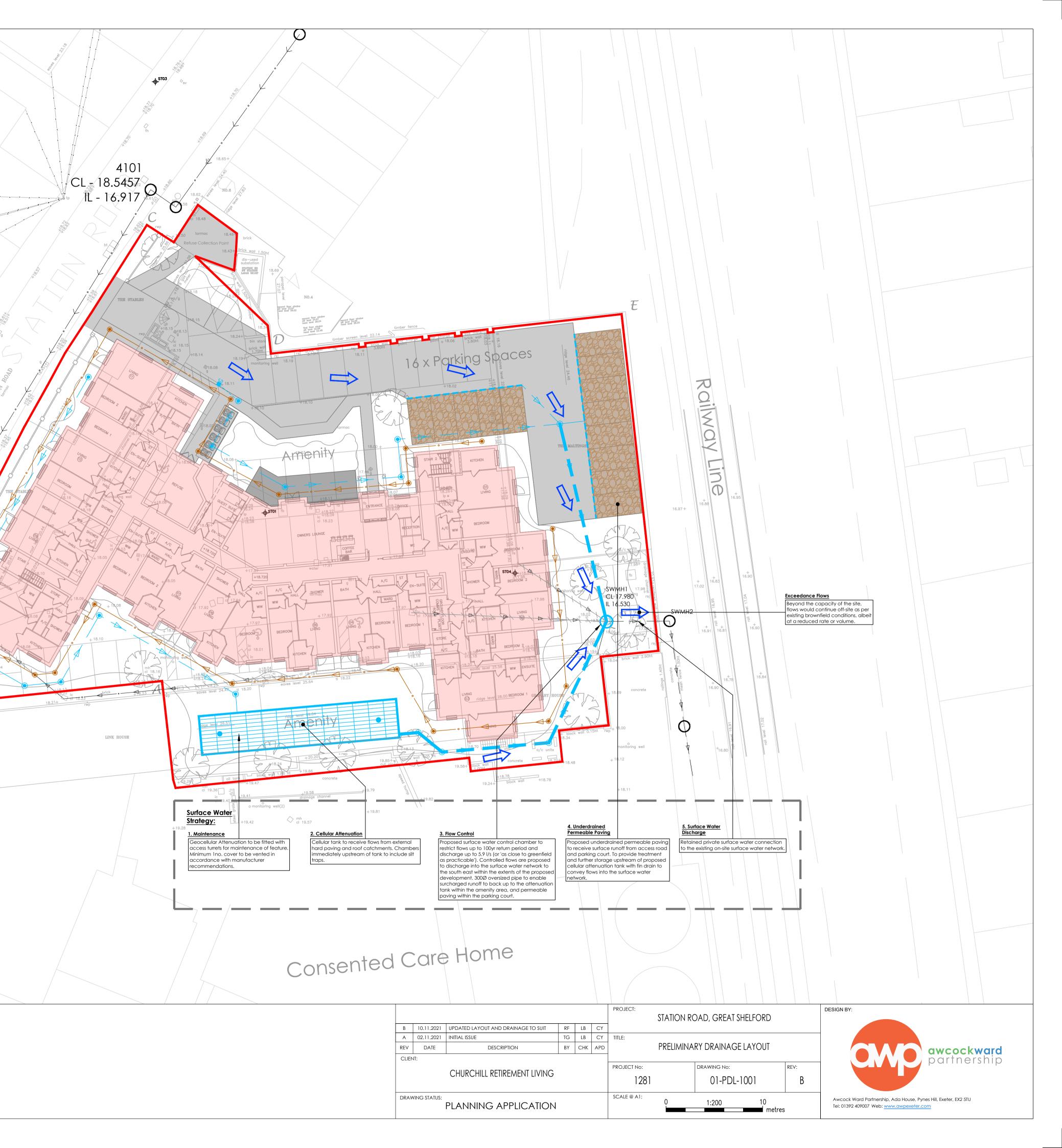
 \odot Fin Drain

Private Yard Gully and Connection Private Surface Inspection Chamber

Flow Control Chamber

 Private Foul Water Sewer Private Foul Inspection Chamber

> Private Foul Manhole Chamber Overland exceedance drain


Existing Drainage to be Abandoned

Foul Water Strategy 1. Foul Discharge

Generated foul flows are to connect into the existing rivate foul sewer within the development boundary before discharging into the Anglian Water adopted foul sewer beneath Station Road to the west.

2. Existing foul water network Existing connection from adjacent site to be retained if live.

